0 | atel | 1 | araz | 2 | arash | 3 | aras | 4 | arar | 5 | aral |
---|---|---|---|---|---|---|---|---|---|---|---|
6 | arah | 7 | arab | 8 | arap | 9 | aran | 10 | aram | ||
11 | arav | 12 | araf | 13 | arath | 14 | arat | 15 | arad | ||
16 | araj | 17 | arag | 18 | araq | 19 | arak | 20 | araks |
See also: kavkem numeral glyphs
The Threadwielder system does not have a fixed base and instead chains numbers together as factors. To prevent this from resulting in excessively long words for numbers, the number being used as a base usually has its distinct suffix shortened into a prefix. A final -atel suffix is optional.
If you were so inclined, you could use the long form and just go haywire:
aralaraharazarasharar = aralarah'arazarasharar = atel'aralarah'arazarasharar = atel + aral * arah + araz * arash * arar = 0 + 30 + 8 = 38 (decimal)
…but you might get murdered for it. :)
Example shorthand usage with bases:
maraz = atel'maraz = atel'arazaram = atel + araz * (aram) = 0 + 1 * (10^1) = 10 (decimal)
matelmaraz = atelatelaramarazaramaram = atel'atelaram'arazaramaram = atel + atel * (aram) + araz * (aram * aram) = 0 + 0 * (10^1) + 1 * (10^2) = 100 (decimal)
arahmaraz = arah'maraz = arah'arazaram = arah + araz * (aram) = 6 + 1 * (10^1) = 16 (decimal)
arahmarazmaraz = arah'maraz'maraz = arah'arazaram'arazaramaram = arah + araz * (aram) + araz * (aram * aram) = 6 + 1 * (10^1) + 1 * (10^2) = 116 (decimal)
arazsharazshatelsharaz = araz'sharaz'shatel'sharaz = araz + araz * (arash) + atel * (arash * arash) + araz * (arash * arash * arash) = 1 + 1 * (2^1) + 0 * (2^2) + 1 * (2^3) = 1011 (base 2) = 11 (decimal)
ararharaz = arar'haraz = arar + araz * (arah) = 4 + 1 * (6^1) = 14 (base 6) = 10 (decimal)