Numerals

0 atel 1 araz 2 arash 3 aras 4 arar 5 aral
6 arah 7 arab 8 arap 9 aran 10 aram
11 arav 12 araf 13 arath 14 arat 15 arad
16 araj 17 arag 18 araq 19 arak 20 araks

See also: kavkem numeral glyphs

Compound Numbers

The Threadwielder system does not have a fixed base and instead chains numbers together as factors. To prevent this from resulting in excessively long words for numbers, the number being used as a base usually has its distinct suffix shortened into a prefix. A final -atel suffix is optional.

If you were so inclined, you could use the long form and just go haywire:

aralaraharazarasharar
= aralarah'arazarasharar
= atel'aralarah'arazarasharar
= atel + aral * arah + araz * arash * arar
= 0 + 30 + 8
= 38 (decimal)

…but you might get murdered for it. :)

Example shorthand usage with bases:

maraz
= atel'maraz
= atel'arazaram
= atel + araz * (aram)
= 0 + 1 * (10^1)
= 10 (decimal)
matelmaraz
= atelatelaramarazaramaram
= atel'atelaram'arazaramaram
= atel + atel * (aram) + araz * (aram * aram)
= 0 + 0 * (10^1) + 1 * (10^2)
= 100 (decimal)
arahmaraz
= arah'maraz
= arah'arazaram
= arah + araz * (aram)
= 6 + 1 * (10^1)
= 16 (decimal)
arahmarazmaraz
= arah'maraz'maraz
= arah'arazaram'arazaramaram
= arah + araz * (aram) + araz * (aram * aram)
= 6 + 1 * (10^1) + 1 * (10^2)
= 116 (decimal)
arazsharazshatelsharaz
= araz'sharaz'shatel'sharaz
= araz + araz * (arash) + atel * (arash * arash) + araz * (arash * arash * arash)
= 1 + 1 * (2^1) + 0 * (2^2) + 1 * (2^3)
= 1011 (base 2)
= 11 (decimal)
ararharaz
= arar'haraz
= arar + araz * (arah)
= 4 + 1 * (6^1)
= 14 (base 6)
= 10 (decimal)