# kraiaKy

### Site Tools

kendane͡ivash:numbers

## Numerals

 0 1 2 3 4 5 atel araz arash aras arar aral arah arab arap aran aram arav araf arath arat arad araj arag araq arak araks

## Compound Numbers

The Threadwielder system does not have a fixed base and instead chains numbers together as factors. To prevent this from resulting in excessively long words for numbers, the number being used as a base usually has its distinct suffix shortened into a prefix. A final -atel suffix is optional.

If you were so inclined, you could use the long form and just go haywire:

```aralaraharazarasharar
= aralarah'arazarasharar
= atel'aralarah'arazarasharar
= atel + aral * arah + araz * arash * arar
= 0 + 30 + 8
= 38 (decimal)```

…but you might get murdered for it. :)

Example shorthand usage with bases:

```maraz
= atel'maraz
= atel'arazaram
= atel + araz * (aram)
= 0 + 1 * (10^1)
= 10 (decimal)```
```matelmaraz
= atelatelaramarazaramaram
= atel'atelaram'arazaramaram
= atel + atel * (aram) + araz * (aram * aram)
= 0 + 0 * (10^1) + 1 * (10^2)
= 100 (decimal)```
```arahmaraz
= arah'maraz
= arah'arazaram
= arah + araz * (aram)
= 6 + 1 * (10^1)
= 16 (decimal)```
```arahmarazmaraz
= arah'maraz'maraz
= arah'arazaram'arazaramaram
= arah + araz * (aram) + araz * (aram * aram)
= 6 + 1 * (10^1) + 1 * (10^2)
= 116 (decimal)```
```arazsharazshatelsharaz
= araz'sharaz'shatel'sharaz
= araz + araz * (arash) + atel * (arash * arash) + araz * (arash * arash * arash)
= 1 + 1 * (2^1) + 0 * (2^2) + 1 * (2^3)
= 1011 (base 2)
= 11 (decimal)```
```ararharaz
= arar'haraz
= arar + araz * (arah)
= 4 + 1 * (6^1)
= 14 (base 6)
= 10 (decimal)``` 